723 research outputs found

    Analytic Evidence for Continuous Self Similarity of the Critical Merger Solution

    Full text link
    The double cone, a cone over a product of a pair of spheres, is known to play a role in the black-hole black-string phase diagram, and like all cones it is continuously self similar (CSS). Its zero modes spectrum (in a certain sector) is determined in detail, and it implies that the double cone is a co-dimension 1 attractor in the space of those perturbations which are smooth at the tip. This is interpreted as strong evidence for the double cone being the critical merger solution. For the non-symmetry-breaking perturbations we proceed to perform a fully non-linear analysis of the dynamical system. The scaling symmetry is used to reduce the dynamical system from a 3d phase space to 2d, and obtain the qualitative form of the phase space, including a non-perturbative confirmation of the existence of the "smoothed cone".Comment: 25 pages, 4 figure

    Dynamical vs. Auxiliary Fields in Gravitational Waves around a Black Hole

    Full text link
    The auxiliary/dynamic decoupling method of hep-th/0609001 applies to perturbations of any co-homogeneity 1 background (such as a spherically symmetric space-time or a homogeneous cosmology). Here it is applied to compute the perturbations around a Schwarzschild black hole in an arbitrary dimension. The method provides a clear insight for the existence of master equations. The computation is straightforward, coincides with previous results of Regge-Wheeler, Zerilli and Kodama-Ishibashi but does not require any ingenuity in either the definition of variables or in fixing the gauge. We note that the method's emergent master fields are canonically conjugate to the standard ones. In addition, our action approach yields the auxiliary sectors.Comment: 26 page

    High and Low Dimensions in The Black Hole Negative Mode

    Full text link
    The negative mode of the Schwarzschild black hole is central to Euclidean quantum gravity around hot flat space and for the Gregory-Laflamme black string instability. We analyze the eigenvalue as a function of space-time dimension by constructing two perturbative expansions: one for large d and the other for small d-3, and determining as many coefficients as we are able to compute analytically. Joining the two expansions we obtain an interpolating rational function accurate to better than 2% through the whole range of dimensions including d=4.Comment: 17 pages, 4 figures. v2: added reference. v3: published versio

    Orientifold Points in M Theory

    Full text link
    We identify the lift to M theory of the four types of orientifold points, and show that they involve a chiral fermion on an orbifold fixed circle. From this lift, we compute the number of normalizable ground states for the SO(N) and Sp(N)Sp(N) supersymmetric quantum mechanics with sixteen supercharges. The results agree with known results obtained by the mass deformation method. The mass of the orientifold is identified with the Casimir energy.Comment: 11 pages, Latex, references adde

    Matched Asymptotic Expansion for Caged Black Holes - Regularization of the Post-Newtonian Order

    Full text link
    The "dialogue of multipoles" matched asymptotic expansion for small black holes in the presence of compact dimensions is extended to the Post-Newtonian order for arbitrary dimensions. Divergences are identified and are regularized through the matching constants, a method valid to all orders and known as Hadamard's partie finie. It is closely related to "subtraction of self-interaction" and shows similarities with the regularization of quantum field theories. The black hole's mass and tension (and the "black hole Archimedes effect") are obtained explicitly at this order, and a Newtonian derivation for the leading term in the tension is demonstrated. Implications for the phase diagram are analyzed, finding agreement with numerical results and extrapolation shows hints for Sorkin's critical dimension - a dimension where the transition turns second order.Comment: 28 pages, 5 figures. v2:published versio

    Stresses and Strains in the First Law for Kaluza-Klein Black Holes

    Get PDF
    We consider how variations in the moduli of the compactification manifold contribute pdV type work terms to the first law for Kaluza-Klein black holes. We give a new proof for the circle case, based on Hamiltonian methods, which demonstrates that the result holds for arbitrary perturbations around a static black hole background. We further apply these methods to derive the first law for black holes in 2-torus compactifications, where there are three real moduli. We find that the result can be simply stated in terms of constructs familiar from the physics of elastic materials, the stress and strain tensors. The strain tensor encodes the change in size and shape of the 2-torus as the moduli are varied. The role of the stress tensor is played by a tension tensor, which generalizes the spacetime tension that enters the first law in the circle case.Comment: 18 pages, 1 figure, Dedicated to Rafael Sorkin in honor of his 60th Birthda

    The Delocalized Effective Degrees of Freedom of a Black Hole at Low Frequencies

    Full text link
    Identifying the fundamental degrees of freedom of a black hole poses a long-standing puzzle. In hep-th/0511133 Goldberger and Rothstein forwarded a theory of the low frequency degrees of freedom within the effective field theory approach, where they are relevancy-ordered but of unclear physical origin. Here these degrees of freedom are identified with near-horizon but non-compact gravitational perturbations which are decomposed into delocalized multipoles. Their world-line (kinetic) action is determined within the classical effective field theory (CLEFT) approach and their interactions are discussed. The case of the long-wavelength scattering of a scalar wave off a Schwarzschild black hole is treated in some detail, interpreting within the CLEFT approach the equality of the leading absorption cross section with the horizon area.Comment: 8 pages. Awarded fifth prize in the 2008 Gravity Research Foundation essay contest. v2: minor change
    corecore